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Abstract—Automatic modulation classification (AMC) is the
method of determining the modulation of a signal by trying to
learn different features/properties of the received signal. AMC
is useful in various civilian and military applications; such as
recognizing allies and reducing overhead requirements. Many
recent works have shown that different neural network architec-
tures can be an effective tool for performing AMC. There have
also been works exploring the use of AMC with equalization (i.e.
filtering) to remove distortion caused by the channel. However,
depending on the channel conditions, one combination of a neural
network and equalizer could perform better than another. In this
paper, we investigate applying reinforcement learning (RL) to a
system using a blind equalizer followed by a bank of neural
networks for the purpose of modulation classification. We use
RL to learn/select the optimal equalizer structure and neural
network for AMC.

I. INTRODUCTION

Digital modulation is the process of encoding digital infor-
mation into the amplitude, phase, or frequency of a transmitted
signal. Different digital modulation schemes (i.e. PSK, QAM,
FSK, PAM) are used to achieve different bit rates, where
higher-order modulations allow transmitters to send more bits
per symbol. In noisy channels, however, signals modulated
using high-order schemes have a higher probability of being
incorrectly decoded by receivers [1]. This has motivated the
exploration of various adaptive modulation systems, which
allow transmitters to determine how best to modulate their
data for a particular channel. In military applications, these
systems can be used to improve communication security. In
civilian applications, these systems can be used to improve
data throughput. These adaptive systems, however, require
some additional signal overhead to inform receivers of the
forthcoming modulation type ahead of every frame. Automatic
Modulation Classification (AMC) is useful in civillian settings
to reduce such overhead, and is useful in military settings to
facilitate electronic warfare efforts [2]. AMC is the process of
automatically identifying the modulation used to send a signal
based on its physical features alone. In the past two decades,
neural networks have become a popular tool for accomplishing
AMC [3], [4], [5], [6]. In recent years, neural networks (NNs)

have become extremely effective at AMC, achieving high
classification accuracy even in complex channels. However,
some of the highest performing networks require substantial
knowledge of the channel in which they are deployed and the
most relevant signal features. This requires additional effort on
the part of users to determine those features ahead of time and
program them into the network [7], [8], [9]. In this paper, we
investigate an AMC system that does not require knowledge
of the channel but still achieves high classification accuracy
by applying a Reinforcement Learning (RL) algorithm to a
bank of several different neural networks, which can determine
in real time which network is most effective in the current
channel conditions. To improve classification accuracy further,
we implement a blind equalizer using the Multi-Modulus
algorithm (MMA) ahead of the bank of neural networks.
The parameters of the equalizer are then selected by the RL
algorithm in real time to optimize its effectiveness.

We focus on two types of channels: High Frequency (HF)
channels and fixed Finite Impulse Response (FIR) channels.
HF channels characterize the HF radio band, ranging from 3-
30MHz, which is often used for long-range communications
because signals can be bounced off of the ionosphere before
reaching a receiver. Unfortunately, this makes the HF channel
particularly noisy because ionospheric conditions fluctuate
frequently, causing HF signals to be subject to unpredictable
multi-path distortion and making modulation classification
more challenging. FIR channels represent an easier scenario
where the channel is time-invariant and causes constant dis-
tortion.

This paper is organized as follows. Section II will provide a
brief overview of current state of the art approaches in AMC.
Section III provides a discussion of our blind equalization
method. Section IV will report on the bank of neural networks
and the training data used. The application of reinforcement
learning will be explained in Section V. Results are shown in
Section VI, followed by Conclusions in Section VII.



II. MODULATION CLASSIFICATION

A. Past Methods

In recent literature, many different methods have been
researched and experimented on for AMC. More recently, the
novel approach to AMC includes the use of deep learning.
Recurrent and convolutional neural networks along with var-
ious hybrid networks have been frequently implemented for
the task of modulation classification as seen in [3], [5]. In
previous research, non deep learning approaches have also
been examined such as likelihood-based classification and zero
crossing [10], [11]. These past approaches display the myriad
of ways to approach this problem, but neural networks have
shown to produce the best results. In [3], the best neural
network was a convolutional network with a dropout of 0.6
which produced an overall accuracy of 87.4%. This proved
that networks were able to match and even outperform some
of the expert feature-based detection methods previously used
for AMC. From here, recurrent neural networks such as the
Long-Short Term Memory (LSTM) and Gated Recurrent Unit
(GRU) began being experimented with. In [12] and [13], the
classification accuracies were becoming closer to the 90th
percentile with the LSTM model reaching close to 90% and
the GRU model reaching 91%. However, the use of deep
learning is only able to classify well enough to a certain extent.
One would assume that deeper, more complex networks would
increase classification accuracy, but that is not exactly the case.
There are suggestions in previous work that efforts should
be put towards improving equalization and synchronization
instead [14].

B. Proposed Method and Model

The proposed method we experiment with in this paper is
implemented in two different experiments. The first experi-
ment consists of using a bank of neural networks accessed
by a reinforcement learning algorithm to classify modulation
types in three different HF channels as shown in Figure 1.

Fig. 1. AMC using Reinforcement Learning in HF Channels

The second experiment is done performed assuming a fixed
channel in which blind equalization is implemented before the
bank of neural networks. Reinforcement learning is applied
to the blind equalizer to determine optimal parameters for
equalization and to the bank of neural networks to determine

which network provides the highest classification accuracy for
the given conditions as shown in figure 2.

Fig. 2. AMC using Reinforcement Learning and Blind Equalization in a
Fixed Channel

III. BLIND EQUALIZATION

In order to improve modulation recognition, we implement
an equalizer ahead of the neural network that uses a blind
equalization algorithm to reduce the effects of noise on the
signal. The main appeal of blind equalizers is that they do
not require a training sequence. The most well-known blind
equalization algorithm is the Constant Modulus Algorithm
(CMA), originally proposed in [15]. However, this algorithm
relies on the assumption that the constellation associated with
the received signal has a constant modulus, which is not
the case for multiple digital modulation schemes. To address
this issue, an extension of the CMA was proposed in [16].
This algorithm, referred to in the literature as the Multi-
Modulus Algorithm (MMA), penalizes deviation of the real
and imaginary parts of the received I/Q data separately.

The algorithm, adopted from [16] and [17], operates
as follows. Given a received noisy signal vector Xn =
[xn, xn−1, ..., xn−L+1] where xn is the nth symbol/sample
being equalized and L is the length of the equalizer, the MMA
produces the equalizer output yn as follows [17]:

yn = wT
nXn, (1)

where wn is the vector of equalizer tap weights at the nth

iteration. wn is center-tap initialized in the form [0, ..., 0, 1,
0, ..., 0] and updated according to

wn+1 = wn − µenX∗
n, (2)

where µ is the step size and en is the error value determined
by [17]

en = (yn,R)(RR − y2n,R) + (yn,I)(RI − y2n,I)j, (3)

where yn,R and yn,I are the real and imaginary components of
yn respectively, while RI and RR are the dispersion constants
given by [17]

RI =
E{S4

I }
E{S2

I }
(4)

RR =
E{S4

R}
E{S2

R}
, (5)

where S represents the set of all constellations corresponding
to the modulation of the signal being equalized; SI and SR



correspond to the real and imaginary components of that set
respectively.

It is important to note that in the context of AMC, S is
unknown when the signal is being equalized because it is
determined by the modulation of the received signal. The
neural network then classifies based on the output of the blind
equalizer. In [6], a workaround for this problem was proposed
involving a bank of equalizers, each configured with dispersion
constants (R) for a different modulation, followed by a “null
block” that removes the null output that may be generated by
equalizers that are configured for the wrong modulation. In this
paper, we propose an alternative workaround by calculating
RI and RR directly from the received signal rather than its
underlying set of constellations. Figure 3 below demonstrates
the effectiveness of this algorithm, which we refer to as the
“Fully Blind MMA”, for a particular channel when compared
to the original MMA with full knowledge of the modulation
of the received signal. The channel used is a fixed FIR channel
taken from [18] with the following complex-valued coeffi-
cients: [-0.005-0.004i 0.009+0.03i -0.024-0.104i 0.854+0.520i
-0.218+0.273i 0.049-0.074i -0.016+0.02i]. The equalizer step
size used is 0.0001 and the tap length is 7. The number of
16-QAM frames sent is 1,000 and the number of symbols per
frame is 10,000.

Fig. 3. Plots the performance of the Fully Blind MMA versus the original
semi-blind MMA using the Symbol Error Rate (SER) vs Signal to Noise Ratio
(SNR) metric, which is common in communication theory.

Note that, although the performance of the fully blind MMA
is not equal to that of the original MMA, it performs fairly
well considering that the constellation is unknown and follows
the same trend as the SNR increases. We have observed this
to be the case in different channels and determined that the
fully blind MMA is suitable for use in our system.

IV. NEURAL NETWORKS

With the intuition that different neural networks will excel at
classifying different modulation types and produce various ac-
curacies in different channel effects we allow a reinforcement
learning algorithm to chose from a bank of neural networks
in order to learn the optimal network for the given conditions.

A. Baseline models

Our bank of neural networks are based on different solutions
proposed in related literature. We have modified the structure
and hyper-parmeters of each network from their original
sources for optimal performance with the HF channel and our
synthetic dataset.

1) CNN: [19] The convolutional neural network (CNN) is
constructed with 29 layers consisting of convolutional, batch
normalization, ReLU activation, pooling, dropout, dense, and
softmax activation layers. This network is trained using the
stochastic gradient descent with momentum (SGDM) algo-
rithm.

2) LSTM: [12] The Long Short Term Memory (LSTM)
Neural Network is constructed with only 6 layers consisting
of LSTM, dense, and softmax activation layers. This network
is trained using the adaptive learning rate method (ADAM).

3) GRU: [13] The Gated Recurrent Unit (GRU) Neural
Network is constructed with only 10 layers consisting of
GRU, ReLU activation, dropout, dense, and softmax activation
layers. This network is trained using the adaptive learning rate
method (ADAM).

4) LSTM-GRU: [20] The LSTM-GRU Hybrid network is
constructed with only 8 layers consisting of LSTM, GRU,
ReLU activation, dense, and softmax activation layers. This
network is trained using the adaptive learning rate method
(ADAM).

B. Dataset Generation

We generate the dataset for our AMC system in the HF
channel by passing symbols through the three HF channel
models given in Table I [21]. Each frame of data is a 2x128 I/Q
vector with the in-phase (I) and quadrature (Q) components
split into two row vectors. The whole set consists of 10,000
frames per each modulation type fed through a random channel
chosen from Table I and a random SNR value ranging from
-10 dB to 25 dB (in increments of 5 dB).

MATLAB HF Channel Models
Channel Time Delay Frequency Spread

Mid-Latitude Quiet 0.5 ms 0.1 Hz
Mid-Latitude Moderate 1 ms 0.5 Hz
Mid-Latitude Disturbed 2 ms 1 Hz

TABLE I
HF CHANNEL MODELS [21]

The I/Q data [22] is also normalized with unit power over
a window length equal to the samples per frame. Table II
shows parameters of the data such as the samples per frame
and samples per symbol as well as how the data is split for
training, validation, and testing. We modulate the data using
8 common schemes given in Table II below.



Neural Network HF Dataset Format
8PSK, BPSK, CPFSK,

Modulation Types GFSK, PAM4, QAM16,
QAM64, QPSK

Samples per Symbol 8
Samples per Frame 128

Sampling Rate 6400
Number of Frames 10,000
SNR Range (dB) −10 to 25

Number of Training Frames 8,000
Number of Validation Frames 1,000

Number of Testing Frames 1,000
TABLE II

DATASET PARAMETERS PER MODULATION

We generate the dataset for our fixed-channel AMC system
using slightly different parameters given in Table III. Each
frame of data is passed through one of six different FIR
channels taken from [6], given in Table IV, and a range of
SNR from 0dB to 20dB chosen randomly.

Neural Network Fixed Channel Dataset Format
8PSK, BPSK,

Modulation Types PAM4, QAM16,
QAM64, QPSK

Samples per Symbol 8
Samples per Frame 128

Sampling Rate 200,000
Number of Frames 10,000
SNR Range (dB) 0 to 20

Number of Training Frames 8,000
Number of Validation Frames 1,000

Number of Testing Frames 1,000
TABLE III

DATASET PARAMETERS PER MODULATION

FIR Channels
Channel 1 [0.067+0.106i -0.226-0.966i]
Channel 2 [0.006+0.019i 0.203-0.963i -0.040+0.169i]
Channel 3 [0.235+0.146i -0.087-0.033i

1.036+1.588i -0.224-0.160i]
Channel 4 [-0.078+0.276i -0.596-0.344i

0.640-1.734i -0.335+0.009i -0.334+0.062i]
Channel 5 [0.275-0.516i -0.309+0.603i

1.577+0.948i 0.182+0.386i 0.239-0.198i
-0.160+0.203i]

Channel 6 [-0.154-0.061i 0.533+0.377i
0.657+0.465i 1.856-1.168i -0.114+1.100i

-0.132+1.055i -0.637+0.245i]
TABLE IV

CHANNELS CHOSEN RANDOMLY FOR TRAINING PURPOSES FROM [6]

V. REINFORCEMENT LEARNING

Reinforcement learning (RL) refers to the automated pro-
cess of repeatedly selecting the best option from a set to
solve a problem in real time with no prior knowledge of the
effectiveness of each option. RL is characterized by the choice
between “exploring” new options or “exploiting” options that
have already shown promising results. For the purpose of
AMC, we use RL to select the optimal parameters for the blind
equalizer and the best neural network to maximize modulation
classification accuracy in a given channel. Our chosen mecha-
nism for RL is known as the Upper Confidence Bound (UCB)

algorithm. This algorithm approaches the “exploitation versus
exploration” dilemma by being optimistic about the actions
that it has explored the least. The UCB algorithm is given
below. [23], [24]

At = argmax[Qt(a) + c
√
log(t)/Nt(a)] (6)

Where At represents the action the agent will choose
at time t. Qt(a) is the action value estimate of action a.
c is the confidence value used to balance exploration and
exploitation and Nt(a) is the number of times action a has
been chosen. Given a finite number of actions available to
the agent, this equation will select the action with the highest
perceived average. The highest perceived reward is dependent
on Qt(a), the exploit term, which is analogous to a history
of past rewards obtained by choosing action a. The second
term, c

√
log(t)/Nt(a), is the explore term that decreases as

more actions are performed; hence, the agent becomes more
confident about the action that will yield the highest reward
as it gains more experience [23], [24].

Reinforcement Learning Parameters
Algorithm Upper Confidence Bound

C value 0.5
Number of Frames 88,000 (11,000 per modulation)

Reward Minimum Average Distance
TABLE V

PARAMETERS FOR RL ON BANK OF NEURAL NETWORKS

In our system models, the actions available to the RL agent
consist of different parameters to be used by the equalizer
and/or different neural network architectures to be used for
classification. The agent selects a new action for each new
frame of data. Our chosen reward scheme is the average
distance between symbols in the equalized signal and the true
constellations to which they are demodulated. This scheme
is based upon our intuitive assumption that there exists a
positive correlation between the accuracy of the modulation
classification and the closeness of the classified points to the
corresponding constellations. The agent aims to select the
action that will return the lowest reward value in order to min-
imize the average distance, ideally maximizing classification
accuracy.



VI. RESULTS

A. RL applied to Blind Equalizer and Bank of Neural Net-
works

Fig. 4. Reinforcement learning performance on the SNR range of 0 to
20dB. Reinforcement learning selection outperformed other neural networks
in accuracy from 8dB to 20dB.

As seen in the above graph, the optimal neural network
and equalizer parameters selected by the UCB reinforcement
learning algorithm outperforms other neural networks from
signal to noise ranges of 8dB to 20dB. When RL selects
the step size, equalizer length, and choice of neural network,
classification accuracy increases. The channel is sufficiently
challenging that classification accuracy does not exceed 50%.
To improve upon this, individual networks could be better
tuned to fit the channel or an “easier” channel could be used.

B. Reinforcement Learning on a Bank of Neural Networks

Fig. 5. Reinforcement learning performance on the SNR range −10 to 0 dB.
Reinforcement learning performed the best with a 44.4125% accuracy rate
with the second best performance from the GRU being 42.7625%.

We found that the reinforcement learning model consistently
receives better accuracy rates than neural networks at low
SNRs, namely -10, -5, and 0 dB. This discovery is important
as classifying modulations at low SNR values is a difficult task
most classification techniques struggles with. Figure 4 depicts
a bar graph of the accuracy of the reinforcement learning
model in comparison to the neural networks from our bank
of neural networks when the reinforcement learning model
is trained solely on data with a SNR range of -10 to 0 dB.
If the reinforcement learning model was selecting the neural
networks at random, its accuracy rate would be the aver-
age accuracy of the neural networks, which is 41.521875%.
However, our results show that the accuracy of the RL-
selected network is 3% increase above the average and 2%
above the accuracy of the best performing individual network.
This demonstrates that reinforcement learning can consistently
outperform individual neural networks in the given SNR range
proves that the network that is most effective at AMC changes
as channel effects and noise vary. Reinforcement learning
enables us to identify and exploit the most effective network in
real time in order to achieve very high accuracy classification
without any prior knowledge of which network will perform
the best.

The reinforcement learning model is also able to receive
higher accuracy rates at higher SNR values, namely 10, 15,
20, and 25 dB, and comparable accuracy rates at 5 dB. These
results were obtained by running the reinforcement learning
model on 11,000 frames per modulation and calculating the
accuracy based on the results of the last 1,000 frames.

Fig. 6. Performance of RL-selected neural network versus individual net-
works, each trained on the same data.

The generated frames, however, must be trained solely on a
fixed SNR in order for the reinforcement learning model to be
able to outperform the neural networks at the respective SNR.
Additionally, the ability of the reinforcement learning model
to outperform the neural networks at higher SNR values is
inconsistent and was obtained through repetitive testing, i.e.
the reinforcement learning model was repeatedly tested on a
newly generated 11,000 frames per modulation and if it did
not receive a higher accuracy than the neural networks then
all variables were reset, new frames were generated, and the
model was run again.



VII. CONCLUSION

Using reinforcement learning (RL) to select from a bank of
pre-trained neural networks, we are able to demonstrate that
the RL-assisted model outperforms the individual networks
that it selects. It appears that different neural networks excel
at classifying modulations given different channel effects and
noise levels; reinforcement learning is able to recognize and
exploit this. The worst case for RL occurs when one neural
network outperforms all the other neural networks for every
type of channel effect and noise level. In such a situation,
the RL-assisted model cannot perform as well as the best
individual network because it explores some of the lesser-
performing networks, which necessarily cause it to lose some
accuracy. However, RL is valuable even in that case because
it is able to closely track the accuracy of the best-performing
network without any prior knowledge of which network would
be most effective. This eliminates the need for extensive offline
testing to determine the most effective individual network
because RL can be trusted to determine that on its own. Our
work in this paper demonstrates the potential of RL to combine
the best parts of multiple classification methods to optimize
testing accuracy.

A. Future Work

The primary avenues for future work are in training more
specialized networks, investigating other reward schemes, and
varying the c-value of the UCB algorithm.

In the experiment shown in Figure 6, we were able to
identify a set of parameters in which the RL agent was able
to outperform the individual networks except at 5dB SNR,
but this was a rare case. We observed that one type of neural
network (most often the GRU) outperformed the others for
most channels and noise levels. One example of this is shown
in Figure 7. This represents the worst case for RL, as described
in the Conclusion above. To remedy this, specialized networks
should be trained so that different networks are better for
different channel conditions. This would allow the RL agent
to learn the best network for each set of conditions and select
a new network when conditions change, thereby achieving
higher accuracy than any individual network could across a
wide range of channel effects.

The effectiveness of the UCB RL agent is highly dependent
on its parameters, including its associated c-value and reward
scheme. We have chosen a reward scheme that attempts to
minimize the average distance between the equalized symbols
and the set of constellations associated with the classified
modulation. While intuitive, this may not be the best way
to reward the RL agent. Further research should focus on
identifying a superior reward scheme.

We also note that the weight of the “explore” term increases
with SNR if the c-value remains constant. This is because a
higher SNR value corresponds to less distortion and therefore a
lower average distance between received points and constella-
tions. Thus, the exploit term grows smaller on average, which
may cause the “explore” term to dominate it. Further work

should focus on determining the significance of this effect and
possibly varying the c-value to counteract it.

Additional work might also focus on testing RL with
different networks, different channels, and different modula-
tion types. This paper focuses on a very limited number of
each to provide a preliminary demonstration of the potential
effectiveness of RL applied to AMC. By increasing the variety
of tools available to the RL agent, its effectiveness may change
drastically.

Fig. 7. Performance of reinforcement learning model trained on a range of
SNR values
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