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Abstract—Due to the lack of required infrastructure, the
HF band is popular for military communications over long
distances. This makes this band a popular target when it comes
to jamming attacks. Our objective with this work is to create an
HF environment to develop and test jamming and anti-jamming
technology in a competitive environment using Simulink. This
environment provides the option to change the environmental
conditions of the HF (High Frequency) channel and will let the
user choose from a variety of jammers available including a
cognitive jammer to test anti-jamming technology against. While
running, the environment gathers data such as BER (bit error
rate) to evaluate system performance.

Index Terms—HF band, Follow-on Jammer, Intelligent Jam-
mer, Reinforcement Learning

I. INTRODUCTION

With the development of new jamming techniques the need
for new anti-jamming methods have become necessary to min-
imize the jamming impact on wireless communications. The
issue of jamming has been exacerbated as machine learning
algorithms are being used to increase jamming capabilities.
Because jamming is in continuous development, the new anti-
jamming techniques are necessary to ensure the good quality
of wireless communications. In this paper we present an
environment to test anti-jamming techniques against different
types of jammers in an HF environment.

This environment simulates the ionosphere effects on a
transmitted signal while adding the jamming to it. In this
work we present an implementation for two types of jammers,
one a follower-jammer and the other an intelligent jammer
implemented using deep-Q networks. The idea behind this
work is to provide a way to develop better anti-jamming
techniques in a simulated environment where the user will
have the facility to set the right conditions for the simulation.
Some parameters that can be changed are: jamming power,
channel SNR (signal-to-noise ratio) and ionosphere conditions.
At the same time the user will be able to use any of the
two types of jammers mentioned previously. This environment
was developed using Simulinks Communications Toolbox and
Reinforcement Learning Toolbox. With this we created a trans-
mitter and a receiver with passband modulation to simulate
the effects of the ionosphere and jamming attacks on the
transmitted signal by calculating the BER at the receiver,

and looking at the frequency domain to visualize how the
transmitter and jamming signal interact with each other.

II. BACKGROUND AND PROBLEM FORMULATION

Even though there are already a few useful anti-jamming
methods, more advanced jammers appeared which need the
development of better anti-jamming techniques. This creates a
continuous loop in which Jamming and anti-jamming tech-
niques continue to advance in efforts to defeat the other.
For this reason, the development and testing of anti-jamming
techniques will be necessary to mitigate the impact that
jamming has on the RF band. The goal of this project is to
build an easy to use environment for people to develop better
anti-jamming technologies in the future.

A. Jammers

There are two big jammer categories: elementary and ad-
vanced. For this project we created two types of jammers using
the definition given in [5] of a follow-on jammer. According
to this paper a follow-on jammer ”hops over all available
channels very frequently (thousand times per second) and jams
each channel for a short period of time (Mpitziopoulos et
al, 2007).” Using this definition we developed a jammer that
hops across different channels and jamms each one for a short
period of time. The other jammer is an intelligent jammer that
uses an actor-critic network to learn the hopping sequence of
a hopping transmitter.

B. High Frequency Band

Anti-jamming is most notably needed in the HF band. The
HF band is located between 3 and 30 MHz and can provide
long distance communications by using skywave propagation.
In skywave propagation a signal directed to the sky is reflected
back to Earth by bouncing against the ionosphere[7]. Three
main problems affecting the HF band are the varying charac-
teristics of the ionosphere through time, the large number of
users and jamming. In our simulation model we specifically
approach the first two problems.

C. Reinforcement Learning and Actor-Critic Networks

Reinforcement learning is a type of machine learning that
learns by trial and error. The agent attempts to learn a set of



actions it should take based on observations of its environment
to achieve a specific objective. Every time the agent selects an
action that assists in it completing its objective, it receives a
reward/punishments based on the effectiveness of the chosen
action. The agent tries to select the action that will produce
the highest reward based on the current observation of the
environment. Typically, a reinforcement learning framework is
implemented using episodes, which are a set amount of time
steps during which the agent must learn the highest-rewarding
actions. During an episode, the state of the environment may
change, which will influence the actions chosen by the agent.

An actor-critic algorithm is a reinforcement learning method
that utilizes outputs from two agents called the actor and critic
to derive an optimal policy. The work of the actor is selecting
the best action for each state and the critic is in charge of
telling the actor how good the action taken was. When the
actor chooses an action the critic will generate a Q-value
representing the long term reward for the action in that state.
The idea of actor-critics is to combine policy-based algorithms
and value-based algorithms to get the benefits of both. The
advantage of policy-based algorithms is they can work with
a continuous set of actions, while their main drawback is
their high variance when estimating gradients[13] Also, this
method does not take into consideration for future actions.
For this reasons policy methods tend to learn slower than
value methods. On the other hand, value methods have a
lower variance than policy methods, however, they require
more computational power. With actor-critics the idea is be
able to work with a continuous action space and at the same
time reducing learning time.

III. APPROACH

To test the jammers, we used the transmitter and receiver
presented in [1]. As shown in Figure 1, the transmitted signal
pass through a Matlab function block containing the stdchan
function from Matlab[2]. This function adds the ionosphere
effects to the transmitted signal and allows us to change
the HF channel conditions. The signal then goes through an
AWGN channel block that adds noise to it, and then the
jamming signal is added by using the sum block. After adding
the environmental effects and the jamming signal, the BER
is measured to test the transmitters performance. With this
configuration, we have control over multiple parameters such
as the carrier frequency, the jamming signal frequency, the
environmental conditions and the jamming power.

A. Follow-on Jammer Implementation

In order to make the follow-on jammer moves across fre-
quencies, we used the discrete-time VCO (voltage-controlled
oscillator) block from Simulink. This block generates a signal
which frequency shift, from its Quiescent frequency parameter
is proportional to the input signal in which the input signal
is interpreted as a voltage [3]. Its main parameters are the
quiescent frequency and input sensitivity. If u is the input to
the VCO block, then the frequency of the output signal will
be equal to quiescient frequency + u * input sensitivity [4].

Fig. 1. System model with intelligent jammer connected

The zero holder block controls how much time it will take for
the jammer to move from one frequency to the other.

Fig. 2. Follow-on Jammer

B. Intelligent Jammer Implementation
As stated in section IV the intelligent jammer is able to

predict the hopping sequence of a hopping transmitter utilizing
an actor-critic, as described in section II, for its reinforcement
learning algorithm. The learning process is control by the RL
Agent block [6], which takes the fast Fourier transform of
the transmitted signal as the observation and gives a reward
depending on the amount of bit errors produced. Every time
there is a bit error at the receiver, a positive reward will be
awarded to the agent block. If no bit errors occur, a negative
reward will be awarded to the agent. Similar to the follow-on
jammer, the discrete-time VCO block is used to change the
frequency of the jamming signal,however, now the frequency
of the output signal is now controlled by the RL Agent block.

Fig. 3. Intelligent Jammer



IV. EXPERIMENTAL RESULTS

The jammers were tested agaisnt a hopping transmitter by
measuring the BER produced by each one. The intelligent
jammer trained for 320 episodes as shown in Figure 7. A
comparison of the BER produced by both jammers can be
seen in Figure 4. It is evident the intelligent jammer performs
better than the follow-on jammer by causing a constant BER
around 46% while the follow-on jammer caused a BER of 5%.
The same test was made with the transmitter hopping at double
the velocity. The performance for this simulation can be seen
in Figure 5. Same as before, the intelligent jammer caused a
46% BER, however, the BER for the follow-on jammer was
a little less than 5%. Another test with the intelligent jammer
was made, this time trained for 180 episodes. As can been
seen on Figure ... the BER time decrease from 46% to around
43%.

Fig. 4. BER for follow-on jammer and intelligent jammer

Fig. 5. BER for follow-on jammer and intelligent jammer with transmitter
hopping at double the speed.

Fig. 6. BER for follow-on jammer trained for 180 episodes

The behavior of the intelligent jammer and the transmitter
can be seen in Figures 9 and 10 in which Figure 9 is for

the jammer trained for 180 episodes and Figure 10 is for the
jammer trained for 320 episodes.

Fig. 7. Graph for 320 episodes of training

Fig. 8. Graph for 145 episodes of training

V. CONCLUSION AND FUTURE WORK

In this paper we presented an environment for testing anti-
jamming in an HF environment and we showed two jammer
implementations using Simulink. One future improvement to
could be to change the reward function since it is not possible
to count the number of bits errors in a real scenario by using
a jammer. A way to approach this could be to use a spectrum
detection method such as energy detection and reward to
the jammer every time the jammer detects the presence of
a transmitted signal. Also restricting the frequencies a trans-
mitter can use by adding multiple primary users will make
the simulation more realistic. Due to time constraints we were
not able to implement as many jammers we wanted. For future
development more jammers should be implemented and more
capabilities that just tracking should be added to the intelligent
jammer.



Fig. 9. Frequency of Intelligent Jammer(in blue) and transmitter (in yellow)
after 180 training episodes

Fig. 10. Frequency of Intelligent Jammer(in blue) and transmitter (in yellow)
after 320 training episodes
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